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ABSTRACT: Photonic sensors have many applications in a range
of physical settings, from measuring mechanical pressure in
manufacturing to detecting protein concentration in biomedical
samples. A variety of sensing approaches exist, and plasmonic
systems in particular have received much attention due to their
ability to confine light below the diffraction limit, greatly enhancing
sensitivity. Recently, quantum techniques have been identified that
can outperform classical sensing methods and achieve sensitivity
below the so-called shot-noise limit. Despite this significant
potential, the use of definite photon number states in lossy
plasmonic systems for further improving sensing capabilities is not
well studied. Here, we investigate the sensing performance of a
plasmonic interferometer that simultaneously exploits the quantum
nature of light and its electromagnetic field confinement. We show that, despite the presence of loss, specialized quantum
resources can provide improved sensitivity and resolution beyond the shot-noise limit within a compact plasmonic device
operating below the diffraction limit.
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Plasmonic excitations have attracted enormous interest in
recent years from a variety of scientific fields due to their

intriguing light-matter features and wide range of applica-
tions.1,2 Plasmonic biosensing, in particular, is one of the most
successful applications, with devices that outperform conven-
tional ones that rely on ordinary photonic components.3−5 Due
to their high sensitivity, multiple surface plasmon resonance
(SPR) sensing devices have been developed over the
decades.6−13 The higher sensitivity of SPR sensors is achieved
via a strong electromagnetic (EM) field enhancement at a metal
surface, where its interaction with free electrons forms a surface
plasmon that confines the field to a spatial domain below the
diffraction limit.14 Such confinement is not possible with
ordinary dielectric media.15 Despite their practical realization
and successful commercialization, the high sensitivity and
associated resolution of SPR sensing are fundamentally limited
by the discretized nature of light known as the shot-noise limit
(SNL).16 However, recently it has been shown that the SNL
can be beaten by using quantum states of light having a super-
or sub-Poissonian photon distribution, or intermode entangle-
ment,17 and an appropriate type of measurement, a strategy

known as quantum metrology.18 A number of impressive
experiments have already demonstrated the basic working
features of quantum metrology using multiphoton states in bulk
optics,19−23 integrated optics,24 and sensing biological
systems.25,26 A question naturally arises about whether such
quantum techniques could be employed in plasmonic sensors
in order to further enhance their capabilities. Here, absorption
constitutes a significant challenge that usually causes a
degradation of the quality of a quantum resource.27

Very recently, work has shown the possibility of reducing
quantum noise in plasmonic sensing by using a two-mode
quadrature squeezed state in a prism configuration28,29 and in a
nanoparticle array.30 However, the role of quantum effects in
more general plasmonic sensing devices at the few-photon level
is not well understood. To address this, we begin with a
concept of quantum plasmonic sensing that utilizes both
quantum features of resource states at the few-photon level and
the EM field enhancement offered by plasmonic structures. We
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show how the combination of quantum and plasmonic aspects
enables one to improve the sensitivity of a device beyond the
SNL, while keeping its compactness on scales below the
diffraction limit. We highlight the feasibility of our approach by
examining the minimum resolution of parameter estimation in
an example interferometer-based plasmonic biosensor. Here,
we consider waveguides that have numerous attractive features
geared toward the design of compact, mobile, broadband and
integratable biosensors. Our analysis shows the beneficial role
that quantum effects can play in a plasmonic sensor, despite the
presence of loss. The techniques developed can be applied to
many other plasmonic sensing platforms and thus we expect
this work to stimulate a variety of further investigations beyond
conventional quantum metrology and classical plasmonic
sensing.31

■ CONCEPT OF QUANTUM PLASMONIC SENSING
We begin with the general scenario for photonic sensing shown
in Figure 1a, which is divided into three stages: (i) a signal
preparation where an incident light field is prepared, (ii) a
transducer that encodes the information on the parameter to be
measured onto the output signal, and (iii) a measurement that
analyzes the output signal from the transducer. A biological
setting is chosen as an example, where a physicochemical
transducer encodes the information of surrounding biological
objects onto the output signal. For other settings the transducer
may take a different form, such as for mechanical,32−34

electrical,35 or magnetic parameters.36,37 In the classical

measurement scenario, a classical source is used for the input
signal, a dielectric medium represents the transducer and a
classical intensity measurement is performed. An enhancement
of sensitivity can be obtained here via two directions: First,
plasmonic effects can be employed in the transducer by using a
metallic medium providing a strong EM field enhancement.
This enables a much higher sensitivity compared to the field in
a conventional dielectric medium, as a change of environment
produces a larger change of the mode properties of surface
plasmons compared to photons.3−5 Second, the signal and
measurement parts can be replaced by quantum elements. For
example, it has been shown that states known as NOON
states38 or quadrature-squeezed states16 can improve the
minimum resolution of parameter estimation beyond the
SNL by using an appropriate measurement scheme. Such
quantum strategies have been employed for biosensing recently
to minimize the shot-noise associated with the random arrival
of photons at a detector.26,39 Even more recently, the use of
plasmonic elements has begun to be considered with the above
quantum strategies, showing the capability of beating the
SNL.28−30 However, it is not entirely clear how quantum
techniques can be incorporated into plasmonic sensing for
further improving the sensitivity with finite photon number
states, even though it has been demonstrated that properties
such as quantum coherence can be preserved in plasmonic
systems.40−43 It is nontrivial that sensitivity beyond the SNL is
achievable in such a lossy, open quantum system. As we will
show, quantum plasmonic sensing is complementary to both
classical plasmonic and quantum techniques for improving the
sensitivity of photonic sensors, as depicted in Figure 1b.
However, the key merit is that it improves functionality by
beating the SNL in a subdiffraction scale system.

■ RESULTS

Simulation. We illustrate the basic concept of quantum
plasmonic sensing in Figure 2a, where a two-arm interfer-
ometer, one of the most successful photonic sensing
techniques,9,44,45 is employed with a nanowire waveguide in
one arm. We focus on a nanowire structure initially as it is a
well studied geometry with many applications in plasmonic
circuitry46,47 and has a high level of miniaturization for sensing
with an accessible interrogation area.3 The interferometric
sensor consists of source and measurement parts and a
transducer part for one arm. The transducer consists of a
dielectric or metallic nanowire with refractive index nd = 1.4475

(doped silica) or ω ω= ϵn ( ) ( )m m (silver) given by
experimental data,48 respectively. The nanowire is surrounded
by a biological medium with refractive index nbio, whose value
varies due to changes in the concentration of a biological
analyte. We choose a range for nbio that ensures single-mode
operation in the waveguides (see Supporting Information). The
change in the biological medium changes the wavenumber k of
the waveguide mode, and the change of the wavenumber
changes the relative accumulated phase of the fields, ϕ, between
both arms, which can be measured in the output signal via an
interference measurement. Here, the wavenumber k for
dielectric and metallic nanowires is determined by a character-
istic equation15,49,50 (see Supporting Information). From the
measurement, we aim to estimate the refractive index unit
(RIU) nbio with the smallest detectable refractive index change
δnbio, assuming for simplicity that there is no scattering when
the input signal enters into the sensing region in the first arm.

Figure 1. General scenario for photonic sensing. (a) For a properly
chosen signal, one measures and analyzes the output light from a
transducer. An example of a biosensor is given, where the transducer
encodes onto the light signal changes in the biological medium. (b)
Four regions in which photonic sensing devices operate, distinguishing
the use of quantum or classical techniques in the signal and
measurement parts, and the use of dielectric or plasmonic material
in the transducer part. The enhancement of sensitivity has been known
to be achieved through the yellow arrows, whereas there is an
intriguing region in the top right that has recently begun to attract
attention, called quantum plasmonic sensing.28−31

ACS Photonics Article

DOI: 10.1021/acsphotonics.6b00082
ACS Photonics 2016, 3, 992−999

993

http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.6b00082/suppl_file/ph6b00082_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.6b00082/suppl_file/ph6b00082_si_001.pdf
http://dx.doi.org/10.1021/acsphotonics.6b00082


A reference point for classical sensing can be found by
considering the entire device as a Mach−Zehnder (MZ)
interferometer. Here, a coherent state |α⟩, written in the Fock-
state basis |m⟩ as

∑α α| ⟩ =
!

| ⟩α−| |

=

∞

e
m

m
m

m
/2

0

2

(1)

with mean photon number, |α|2 = N, is fed into one input port
of the first beamsplitter of the MZ and a vacuum state fed into
the other. The output of this beamsplitter constitutes the
source stage. An intensity-difference measurement, M̂ = I1̂ − I2̂,
is performed by using the second beamsplitter of the MZ
placed after the sensing region and measuring the output
intensities. This constitutes the measurement stage. The above
classical sensing strategy is optimal in that it leads to the SNL
on the resolution δnbio.
On the other hand, by using quantum techniques, one can

consider a NOON state22,23,51 generated at the source stage,
that is,

ψ| ⟩ = | ⟩ + | ⟩N N
1
2

( 0 0 )in 12 12 (2)

where N denotes the number of photons. The observable
Â = |0,N⟩⟨N,0| + |N,0⟩⟨0,N| can be used for the quantum
measurement, which together with the NOON state allows one
to reach the Heisenberg limit (HL) for δnbio in the absence of
photon loss.18,22

In Figure 2b, we present the measurement signals ⟨M̂⟩ = M0
cos(ϕ(nbio)) and ⟨Â ⟩ = A0 cos(Nϕ(nbio)) simulated for the
classical scenario using a coherent state and the quantum
scenario using a NOON state, respectively. The state |ψout⟩

generated from encoding ϕ onto the input state |ψin⟩ is used to
calculate ⟨...⟩, that is,

ψ α α| ⟩ = − ⟩ + ⟩ϕ ϕe i e
1
2

( 1)
1
2

( 1)i i
out classical 1 2

and

ψ ⟩ = ⟩ + | ⟩ϕe N N
1
2

( 0 0 )IN
out quantum 12 12

(see Supporting Information). Here, N = 4 has been chosen
and ϕ(nbio) denotes the relative phase accumulated during
propagation (free-space wavelength λ0 = 810 nm chosen as an
example) along a dielectric and silver nanowire with a core
radius of 50 nm and length l = 4 μm. The lateral confinement
of the field of the dielectric nanowire is diffraction limited
(∼λ0/nd), whereas that of the metallic nanowire is not (≪λ0).

15

For the relative phase picked up, we have ϕ(nbio) = β(nbio) × l,
where the propagation constant β(nbio) ≡ Re[k] is a function of
nbio (see Supporting Information). Here, we have considered a
lossless silver nanowire, that is, Im[k] = 0. We consider the
impact of losses later. The main purpose at this stage is to show
the difference between classical and quantum techniques, and
the use of dielectric and plasmonic systems. It can be seen in
Figure 2b that the expectation value for the quantum plasmonic
case oscillates far more rapidly than the others, implying that a
small change of nbio induces a large detectable change of the
measurement signal. It may seem like one can resolve an
infinitesimal change of nbio by simply measuring the change of a
given measurement signal, but this is not the case as the curves
in Figure 2b become naturally blurred when quantum
fluctuations are involved. Therefore, in Figure 2c we evaluate
the minimum resolution of the refractive index change

Figure 2. Quantum plasmonic sensing. (a) General two-mode interferometer with one arm in a nanowire waveguide. A quantum or classical state
from a source stage is fed into the interferometer. The sensing arm (mode 1) is embedded in an environment and the signal acquires a phase change
Δϕ due to changes in the refractive index, nbio, during its propagation, modifying the output signal at the measurement stage. (b) The expectation
values of an observable ⟨Ô⟩, where Ô = M̂ (with |ψout⟩classical) and Â (with |ψout⟩quantum), optimized for classical (C) and quantum (Q) sensors,
respectively. Here, an average photon number of N = 4 is used to show that the quantum plasmonic case (the red curve) oscillates more rapidly than
all others, implying that a small change of nbio induces a large detectable change in the monitored output signal. In this example, we consider both
dielectric and lossless silver metallic nanowires, with a core radius of 50 nm and a length of l = 4 μm at λ0 = 810 nm, where ncore = 1.4475 and

ω ω= ϵn ( ) ( )core m from the experimental data in ref 48. (c) The minimum resolution, δnbio, shows that quantum plasmonic sensing exhibits the
best performance.
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achievable from an observable Ô (=Â or M̂ for quantum or
classical scenarios) with quantum fluctuations included. The
resolution is obtained by the linear error propagation method52

as

δ = Δ ̂
|∂⟨ ̂⟩ ∂ |

n
O

O n/bio
bio (3)

where ΔÔ = (⟨Ô2⟩ − ⟨Ô⟩2)1/2. Here, the parameter of interest
in our biosensing scenario is nbio instead of the relative phase ϕ,
the usual quantity considered in quantum metrology.18 Its
corresponding resolution δnbio depends on the waveguide
material. The behaviors seen in Figure 2c clearly show that, for
the quantum plasmonic case, the resolution δnbio is smallest
compared to the others. This implies that quantum plasmonic
sensing can outperform both standard dielectric quantum
metrology and classical plasmonic sensing within the same
parameter regime. We note that the quantum case yields a

material-dependent HL, δ = ϕ∂
∂

−
n

N nbio
(HL) 1

1

bio
, which has a factor

√N improvement over the classical case with a material-

dependent SNL, δ = ϕ∂
∂

−
n

N nbio
(SNL) 1

1

bio
, the origins of which we

discuss in detail below.
Quantum and Plasmonic Features Combined for

Enhanced Sensing. We now look at how quantum resources
enable plasmonic sensing to go beyond the SNL. The
interferometric setup in Figure 2a has the ability to
quantitatively detect a phase change Δϕ induced by a change
of the propagation constant, that is, Δϕ = Δβ × l, where Δβ is
induced by a variation in the analyte. Thus, the chosen material
in the transducer is only responsible for how sensitively it
accumulates Δϕ as nbio changes. On the other hand, the
quantum source and measurement are responsible for how
sensitively the chosen state and measurement stage respond to
Δϕ. Such separate roles are manifested in the sensitivity, defined
as the ratio of the change in sensor output ⟨Ô⟩ to the change in
nbio, which can be written by the chain rule as

ϕ
ϕ= ∂⟨ ̂⟩

∂
= ∂⟨ ̂⟩

∂
∂

∂
O

n
O

nbio bio (4)

where the expectation value ⟨Ô⟩ is assumed to have only ϕ-
dependence with respect to nbio. The first term on the right-
hand side describes the sensitivity of the output ⟨Ô⟩ to ϕ,
whereas the second term describes the sensitivity of ϕ to nbio.
Consequently, eq 3 can be rewritten as

δ δϕ ϕ= ∂
∂

−

n
nbio

bio

1

(5)

where δϕ = ΔÔ/|∂⟨Ô⟩/∂ϕ| denotes the minimum resolution of
the phase and does not depend on the waveguide material,
provided that |ψout⟩ can be written as a function of ϕ only. Note
that it is the nonclassical nature of the source and the
measurement that decreases δϕ below the SNL, which is clearly
seen in Figure 3a,b, where we reproduce well-known behaviors
of ⟨Ô⟩ and δϕ for classical and quantum metrology with the
same input states and measurements used in Figure 2. On the
other hand, the sensitivity ∂ϕ/∂nbio (=l × ∂β/∂nbio) depends on
the material used and can be increased by a plasmonic
transducer. In Figure 3c,d, we show β and its slope change with
increasing RIU for dielectric and metallic waveguides. The
enhanced sensitivity of β is a result of the strong field

confinement for the plasmonic mode, making it more sensitive
to Δnbio. In other words, the resolution δϕ is improved by
properties of a chosen input state and measurement, while the
sensitivity ∂ϕ/∂nbio is improved by the mode properties of the
transducer. The combined effect of these quantum and
plasmonic features is what leads to the results seen in Figure 2c.
Our analysis can be generalized to any kind of plasmonic

setup for which the sensitivity and the minimum resolution can

be rewritten in terms of a parameter X as ̃ = ∂⟨ ̂⟩
∂

∂
∂S O

X
X

nbio
and

δ δ̃ = ∂
∂

−
n X X

nbio

1

bio
, where δX = ΔÔ/|∂⟨Ô⟩/∂X| denotes the

minimum resolution of parameter estimation. The enhance-
ment of ∂X/∂nbio depends on the material, the modulation
technique, and the surface plasmon excitation method.53 On
the other hand, ∂⟨Ô⟩/∂X and δX depend on the quantum input
|ψin⟩ and the measurement Ô, where the output |ψout⟩ is
generated from encoding X onto the input |ψin⟩. For example,
the widely used Kretschmann configuration could replace the
transducer shown in Figure 1a28,29 and the reflection coefficient
|R|2 used as the effective parameter X. In this case, the refractive
index change would not be picked up as a phase, but rather as
an intensity (or peak angular position). However, one could
also consider embedding the Kretschmann configuration
directly within an interferometer,54 and the change picked up
as a phase, bringing this method inline with the interferometric
setting we have described. These more general expressions
provide a better understanding of the specific roles that
quantum and plasmonic features play and enable the efficient
optimization of quantum plasmonic sensing. In addition to
enhanced sensitivity and resolution, there are other advantages
of using plasmonics, for example, a small-sized mode volume
below the diffraction limit that conventional photonics cannot
achieve. This is important since a highly miniaturized sensor is
commonly required to measure tiny organic molecules within a
limited interaction area.3 The combination of the reduced shot-

Figure 3. Roles of quantum and plasmonic effects. Quantum-enhanced
sensitivity comes from the source and measurement stages, which are
responsible for how sensitive the initial state and the observable are
with respect to the phase. (a) Comparison of the classical and
quantum metrology scenarios in terms of the expectation values of Â
and M̂. (b) Minimum estimation precision, δϕ, corresponding to the
measurements in panel (a). In panel (a), the expectation value of ⟨Â⟩
oscillates more rapidly than that of ⟨M̂⟩; the classical case leads to the
SNL and the quantum case leads to the HL in panel (b), that is,
δϕ(SNL) = 1/√N and δϕ(HL) = 1/N. The plasmonic enhanced
sensitivity comes from the transducer, which can be seen in terms of
the relation between the propagation constant β and nbio. (c) β for the
lossless plasmonic and dielectric waveguides. (d) Slope of β over nbio
showing the rate of change.
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noise of a quantum resource and the enhanced sensitivity
provided by plasmonics guarantees that quantum plasmonic
sensing can, in principle, go beyond both the shot-noise and the
diffraction limit.
Realistic Scenario Including Loss. We now show that

quantum plasmonic sensing remains able to beat the SNL even
when realistic metallic losses are included. To do this, we
require an optimal quantum state for the source for a given
amount of loss. The NOON state previously studied is
extremely fragile to loss and is not an optimal quantum state,
resulting in a much worse resolution than the SNL even for
moderate loss.55 Assuming the optimal measurement will be
performed, we focus on optimizing the input state. In this case,
the minimum resolution is given by the Crameŕ-Rao bound
according to quantum parameter estimation theory,56 that is,

δϕ = −FQ
1/2

(6)

where the quantum Fisher information, FQ, represents a
measure of the amount of information that a state contains
about ϕ with respect to the optimized measurement over all
possible schemes (see Supporting Information). We optimize
the coefficients of an input state with fixed N written as

∑ψ| ⟩ = | − ⟩
=

c n N n,
n

N

nin
0 (7)

such that FQ is maximized and δϕ is minimized.55

As possible plasmonic waveguides, we consider the nanowire
waveguide previously studied and a wedge waveguide,57 as
shown in Figure 2a. Wedge waveguides have recently been
shown to be highly beneficial for plasmonic devices in the
quantum regime due to their high field confinement58 and
broadband response over a wide operating range, a key
requirement for a good biosensor, allowing one to avoid
frequencies where the analyte is absorbing. The amount of loss
in the waveguides is determined by Im[k] and l, with l = 4 μm
chosen as an example. We use a beamsplitter model for
including loss, where a fictitious beam splitter with a
transmitivity η = exp(−2Im[k]l) is inserted in one arm of the
interferometer. Such a model is also valid for loss occurring
during the phase acquisition in a metallic nanowire since the
loss operation and the phase accumulation commute with each
other.55 The parameter FQ is then given as a function of the set
{xn = |cn

2|} and η (see Supporting Information). For the
nanowire, we consider the same range of nbio as before in order
to aid comparison of the results. On the other hand, for the
refractive index near the wedge waveguide, in order to give a
more realistic scenario, we consider nbio = ns + A × C, where ns
= 1.333 denotes water as a solvent, A = 0.00182, and C
represent Bovine Serum Albumin (BSA) as a solute13 and the
number of grams of BSA solute per 100 mL of solution,
respectively. For the wedge waveguide, C is varied from 0 to
60%, yielding nbio ranging from 1.333 to 1.4422. For the
nanowire, nbio is between 1.1 and 1.4 as before, ensuring that
only a single mode exists for a radius of 50 nm. For the wedge
waveguide, the top angle is 70.6° and the bottom angles are
54.7° (see Supporting Information). The plasmon mode sits on
top of the wedge, and the height can be set arbitrarily small
down to ∼50 nm for λ0 = 810 nm, after which the mode has a
significant presence at the bottom edges.57,58

For the respective ranges of nbio, we present the transmission
coefficient η in Figure 4a,b. For each η, depending on nbio, the
optimal distributions of {xn} for N = 4 are shown in Figure

4c,d, for which FQ is maximized, yielding the optimal minimum
resolutions in Figure 4e,f. The optimal xn coefficients define the
“optimal state” for sensing and are different depending on the
amount of loss, but their relative phases are not important.55

We also compare the optimal minimum resolutions with the
HL (lower dashed lines) and the standard interferometric limit
(SIL) (upper dashed lines), which corresponds to the SNL, but
optimized using an unbalanced beamsplitter in order to
minimize resolution in the presence of losses.59 It can be
clearly seen that the resolution with the NOON state is much
worse than the SIL given as

δ
η

η
ϕ=

+ ∂
∂

−

n
N n

1
2bio

(SIL)

bio

1

(8)

whereas the optimal state beats the SIL in both plasmonic
waveguides.
The optimal state is different depending on the amount of

loss, so for experimental relevance it is important to check if a
given input state optimized for a certain amount of loss still
beats the SIL over the whole range of nbio measured. Figure 5a
and b present the results of three points chosen from Figure 4c
and d, respectively, showing that the chosen states remain
beyond the SIL over the respective ranges of nbio.

Figure 4. Realistic quantum plasmonic sensing. A lossy nanowire (left
column) and a wedge waveguide (right column) are considered, where
loss is modeled as a fictitious beamsplitter with a transmitivity η =
exp(−2Im[k]l) for a propagation length l. (a) For propagation with l =
4 μm, η is obtained in terms of nbio by solving the characteristic
equation for the nanowire.15,49 (b) FEM simulation via COMSOL is
used for the wedge waveguide (top angle 70.6° and bottom angles
54.7°). (c) The optimal set {xn} for a state with a definite photon
number N = 4 is shown for the nanowire waveguide. (d) The optimal
set {xn} for the wedge waveguide. (e) The optimal resolution imposed
by the Crameŕ-Rao bound for the NOON state and the optimized
state for a given η for the nanowire. (f) The optimal resolution for the
wedge waveguide. The shaded area in panels (e) and (f) is bounded at
the top by the standard interferometric limit (SIL), corresponding to
the SNL but optimized for an unbalanced beamsplitter to minimize
the resolution in the presence of losses.59 The area is bounded at the
bottom by the HL. A line within the shaded area shows an
improvement over classical plasmonic sensing.
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It is worth noting that the quantum dielectric case where
losses are absent or nearly negligible, shown in Figure 2c,
provides smaller a resolution δnbio than the case of quantum
plasmonic sensing including loss. However, this does not mean
that the quantum dielectric case is always the best strategy
because it is diffraction limited and cannot be used for a sensing
on scales far below the operating wavelength. In such a
scenario, the use of quantum resources in a plasmonic system
would be the best strategy, although at the cost of the sensing
resolution.
We also investigate the resolution δnbio as N increases for the

NOON state, the optimal state, the SIL, and the HL. These
more general results are shown in Figure 5c,d, where the
optimal states remain beyond the SIL (upper dashed line),
regardless of N. It should be noted that the quantum
enhancement is reduced with increasing N, that is, in Figure
5c,d, the gap between the HL and the SIL decreases with

increasing N, δ δ− = −η
η

ϕ+ ∂
∂

−

( )n n
N N nbio

(SIL)
bio
(HL) 1 1

2
1

1

bio
,

while the optimal state resolution remains at a roughly fixed
distance below the SIL. On the other hand, the relative
difference, defined by (δnbio

(SIL) − δnbio
(HL))/δnbio

(SIL), approaches
unity in the limit of large N, while the other relative difference,
defined by (δnbio

(SIL) − δnbio
(HL))/δnbio

(HL), diverges in the limit of
large N. Such a behavior naturally arises from the √N
improvement of the HL over the SIL. Considering Figure 5c,d,
it might seem at first that quantum plasmonic sensing is not
necessary because a given resolution can always be achieved by
simply increasing the intensity of a classical input source to get
the SIL, for example, δnbio ∼ 10−8 RIU is, in principle,

achievable by a λ0 = 810 nm laser with an initial power of 1 mW
having N ∼ 4 × 1015 photons per second and an appropriate
mode volume with a large power density.31,53,60 A high-power
source, however, is not commonly desired for biological
measurements since it may damage the specimen under
investigation60−62 or cause other unwanted phenomena such
as thermal modulation of the surface plasmon mode.63 In this
case, at the few-photon level, one may then consider the
benefits of using quantum sensing with either a dielectric or
plasmonic waveguide. Here, for a fixed value of N, the quantum
plasmonic sensor provides a low mode volume and allows one
to go beyond the SIL in a compact setting below the diffraction
limit. This is crucial when only a small biological sample is
available, or one would like a more compact and integrated
sensing device than standard dielectric components can
achieve. Note that while the power density in a plasmonic
waveguide is enhanced compared to a dielectric waveguide due
to the low mode volume, it is the total power that is important
in gaining the quantum advantage, as the shot-noise or
Heisenberg limits are related to the photon number statistics
rather than the optical power density. Despite all the
demanding requirements of quantum measurement with
plasmonic systems, in recent years several experimental studies
have demonstrated the feasibility of quantum plasmonic
sensing using low intensity input sources.28−30

Discussion. In this work we studied quantum plasmonic
sensing in the few photon regime and showed an example
quantum plasmonic sensor that can beat the SNL in the
presence of metallic losses. We have demonstrated how the
inclusion of quantum techniques in a plasmonic system enables
one to further improve its sensitivity and resolution beyond the
SNL, while keeping the compactness of the device on scales far
below the diffraction limit. Our analysis is applicable to any
type of plasmonic sensing platform and we leave a variety of
technical issues related to quantum plasmonic sensors for
future works. For example, the performance of a quantum
plasmonic sensor would benefit from further investigation into
different excitation platforms such as a prism, grating, localized
SPR sensor, metamaterials and graphene, as well as
modulation-based approaches. In addition to the sensitivity
and resolution considered in this work, other figures of merit
such as accuracy, precision, or kinetic analysis will need to be
taken into account for practical use in industry. We envisage
that progress in quantum metrology will reshape the field of
plasmonic biosensing, a field that has already developed into
mature technology for at least two decades.31 Our work opens
up a path between the quantum metrology and plasmonic
sensing fields, and has the potential to lead to a variety of
studies at the level of practical realization. Integrated quantum
plasmonic sensors may also find application in on-chip
nanoscale quantum network devices, with potential uses in
quantum tasks where precise and compact measurement is
required.64,65
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The characteristic equations for the plasmonic and
dielectric nanowire waveguides, analytical expression of
the quantum Fisher information in the presence of loss,

Figure 5. Resolutions of optimal states and increasing average number
of photons. Input states optimized for a certain amount of loss still
beat the SIL over the whole range of nbio for the lossy plasmonic
nanowire and wedge waveguides considered in Figure 4. (a) Three
points are randomly chosen from Figure 4c: (1) nbio = 1.13, (2) nbio =
1.19, and (3) nbio = 1.37. For these points, the optimal states found
with the corresponding amount of loss are used as the input states and
the resolutions are obtained over the whole range of nbio for the
nanowire waveguide. (b) Same as (a), but for the wedge waveguide.
Here the points correspond to those in Figure 4d: (1) nbio = 1.34392,
(2) nbio = 1.36576, and (3) nbio = 1.43128. (c) The resolution δnbio
with increasing N for the NOON state, optimal state, SIL, and HL
cases show that the optimal states remain beyond the SIL, regardless of
N for the nanowire. (d) Same as (c), but for the wedge waveguide. In
both (c) and (d), the value of nbio corresponds to point (2) in Figure
4c and d, respectively. The quantum enhancement in both plots (c and
d) is reduced with increasing N, as the gap between the optimal state
resolution and the SIL decreases with N. A line within the shaded area
shows an improvement over classical plasmonic sensing.
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and further details of the wedge waveguide used in the
analysis (PDF).
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Balasubramanian, G.; Wolf, T.; Reinhard, F.; Hollenberg, L. C. L.;
Jelezko, F.; Wrachtrup, J. Electric-field sensing using single diamond
spins. Nat. Phys. 2011, 7, 459.
(36) Taylor, J. M.; Cappellaro, P.; Childress, L.; Jiang, L.; Budker, D.;
Hemmer, P. R.; Yacoby, A.; Walsworth, R.; Lukin, M. D. High-
sensitivity diamond magnetometer with nanoscale resolution. Nat.
Phys. 2008, 4, 810.
(37) Maze, J. R.; Stanwix, P. L.; Hodges, J. S.; Hong, S.; Taylor, J. M.;
Cappellaro, P.; Jiang, L.; Dutt, M. V. G.; Togan, E.; Zibrov, A. S.;
Yacoby, A.; Walsworth, R. L.; Lukin, M. D. Nanoscale magnetic
sensing with an individual electronic spin in diamond. Nature 2008,
455, 644.
(38) Boto, A. N.; Kok, P.; Abrams, D. S.; Braunstein, S. L.; Williams,
C. P.; Dowling, J. P. Quantum Interferometric Optical Lithography:
Exploiting Entanglement to Beat the Diffraction Limit. Phys. Rev. Lett.
2000, 85, 2733.
(39) McGuinness, L. P.; Yan, Y.; Stacey, A.; Simpson, D. A.; Hall, L.
T.; Maclaurin, D.; Prawer, S.; Mulvaney, P.; Wrachtrup, J.; Caruso, F.;

ACS Photonics Article

DOI: 10.1021/acsphotonics.6b00082
ACS Photonics 2016, 3, 992−999

998

http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.6b00082/suppl_file/ph6b00082_si_001.pdf
mailto:changdolli@gmail.com
mailto:markstame@gmail.com
http://dx.doi.org/10.1021/acsphotonics.6b00082


Scholten, R. E.; Hollenberg, L. C. L. Quantum measurement and
orientation tracking of fluorescent nanodiamonds inside living cells.
Nat. Nanotechnol. 2011, 6, 358.
(40) Altewischer, E.; van Exter, M. P.; Woerdman, J. P. Plasmon-
assisted transmission of entangled photons. Nature 2002, 418, 304.
(41) Moreno, E.; García-Vidal, F. J.; Erni, D.; Cirac, J. I.; Martín-
Moreno, L. Theory of Plasmon-Assisted Transmission of Entangled
Photons. Phys. Rev. Lett. 2004, 92, 236801.
(42) Huck, A.; Smolka, S.; Lodahl, P.; Sørensen, A. S.; Boltasseva, A.;
Janousek, J.; Andersen, U. L. Demonstration of Quadrature-Squeezed
Surface Plasmons in a Gold Waveguide. Phys. Rev. Lett. 2009, 102,
246802.
(43) Lawrie, B. J.; Evans, P. G.; Pooser, R. C. Extraordinary Optical
Transmission of Multimode Quantum Correlations via Localized
Surface Plasmons. Phys. Rev. Lett. 2013, 110, 156802.
(44) Lin, V. S.-Y.; Motesharei, K.; Dancil, K.-P. S.; Sailor, M. J.;
Ghadiri, M. R. A porous silicon-based optical interferometric
biosensor. Science 1997, 278, 840.
(45) Hoa, X. D.; Kirk, A. G.; Tabrizian, M. Towards integrated and
sensitive surface plasmon resonance biosensors: a review of recent
progress. Biosens. Bioelectron. 2007, 23, 151.
(46) Gramotnev, D. K.; Bozhevolnyi, S. I. Plasmonics beyond the
diffraction limit. Nat. Photonics 2010, 4, 83.
(47) Bozhevolnyi, S. I.; Volkov, V. S.; Devaux, E.; Laluet, J.-Y.;
Ebbesen, T. W. Channel plasmon subwavelength waveguide
components including interferometers and ring resonators. Nature
2006, 440, 508.
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